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Abstract
We determine the iterative solution, on the complex plane, of theµ-holomorphy
equation. Then we obtain the µ-holomorphic projective connection as a
Neumann series in powers of the Beltrami differential µ. Since it has been
shown that the Polyakov action of a conformal model with a central charge k is
expressed in terms of the µ-holomorphic projective connection, we then prove
the Polyakov conjecture.

PACS numbers: 11.25.Hf, 02.40.-k

1. Introduction

The geometrical character of bi-dimensional conformal models has been stressed and expressed
in different papers. For literature (dating back 15 years) on the conformal symmetry and its
application in bosonic string theories see [4, 5].

Indeed, the fact that a conformal model is related to a Riemann surface � gives arise to
the fact that the perturbative development that contains the Green functions of the model is
expressed in powers of the Beltrami differential µ, |µ| < 1 [6–8]. The latter is interpreted
as an exterior source of the energy–momentum tensor associated with a bi-dimensional
conformal model of central charge k for which Polyakov has used [9, 10] the following two
conjectures: (1) uniqueness of renormalization: the Polyakov action that is a solution of
the conformal Ward identity resums the iterative series provided by the renormalization field
theory. (2) Universality: this solution is independent of the model’s fields.

Geometrically, the Beltrami differentials parametrize the complex structures on the
Riemann surface � on which the model is constructed. Due to this fact, the transition
from a reference complex structure (z, z) to another one (Z(z, z);Z(z, z)) parametrized by µ,
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where the conformal invariance is always maintained; ∂Z
∂Z

= 0 is called a µ-quasiconformal
transformation and is defined by the Beltrami equation

(∂ − µ∂)Z = 0

∂ ≡ ∂

∂z
∂ ≡ ∂

∂z
.

(1.1)

This geometrical formulation of the bi-dimensional conformal model, based on the Beltrami
parametrization of complex structures enables one to give an essential role to the locality. The
advantage of this functional framework, that does not use a metric on �, is that it naturally
implies the holomorphic factorization. Then the Z(z, z) coordinate that parametrizes the µ-
complex structure on � and that is the solution of the Beltrami equation (1.1) is interpreted
as the Wess–Zumino field on which depends the Polyakov action (the effective action of a
bi-dimensional conformal model of central charge k) [6]:

�WZP[µ] = − k

12

∫
C

dm (z, z)(µ∂2 ln ∂Z)(z, z) (1.2)

with

dm(z, z) ≡ dz ∧ dz

2iπ
.

On the other hand, each complex structure is associated with a projective structure that is
parametrized by a projective connection R. This latter is required to preserve the conformal
covariance of the diffeomorphisms anomaly [2, 3, 9] that appears in the conformal Ward
identity [3, 6, 9]:

(∂ − µ∂ − 2∂µ)
δ�WZP

δµ
= k

12
(∂3µ + µ∂R + 2R∂µ). (1.3)

For example, the projective connection associated with a reference complex structure is
holomorphic and is denoted by R0:

∂R0 = 0. (1.4)

However, the projective connection, associated with aµ-projective structure is not holomorphic
in the reference complex structure, is denoted by R and satisfies the µ-holomorphic
equation [2, 9]:

∂R = ∂3µ + 2R∂µ + µ∂R. (1.5)

Among the results presented in this paper, we determine the iterative solution of equation (1.5)
by giving the corresponding Neumann series with the help of the Cauchy kernel techniques
for the ∂-operator that were developed in [6–8].

2. The Beltrami equation

Let us consider for the sense-preserving diffeomorphism f the derivative ∂αf in the direction
α [10]:

∂αf = ∂f + e−2iα∂f (2.1)

where ∂f ≡ ∂f (z)

∂z
.

Then we have

max
α

|∂αf | = |∂f | + |∂f |
min
α

|∂αf | = |∂f | − |∂f | (2.2)
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where ‖ denotes the absolute value, and the dilatation quotient

Df ≡ maxα |∂αf |
minα |∂αf | (2.3)

is finite. Hence, we can write

Df � K (2.4)

for every z ∈ A. A is a domain on a Riemann surface �.
Moreover, the Jacobian Jf = |∂f |2 − |∂f |2, for a sense-preserving diffeomorphism f , is

positive. Then ∂f (z) 	= 0, and we can form the quotient:

µ(z) ≡ ∂f (z)

∂f (z)
. (2.5)

The function µ, so defined in A, is called the analytic dilatation of f . Since f is continuous,
µ is Borel-measurable function, and from (2.4) we see that

|µ(z)| � K − 1

K + 1
≺ 1. (2.6)

The definition of complex dilatation leads us to consider the Beltrami equation

∂f = µ∂f (2.7)

where µ is measurable and ‖µ‖∞ ≺ 1.
Iff is conformal,µvanishes identically, and (2.7) becomes the Cauchy–Riemann equation

∂f = 0.
A sense-preserving diffeomorphismf with the property (2.4) is called aK-quasiconformal

mapping.
By definition, a collection φ of functions φα defined on each domain Aα by

φα : Aα → �

φα = φ ◦ zα
(2.8)

is called a (p, q)-differential on � if it is invariant under holomorphic change of coordinates:
(Aα, zα)→ (Aβ, zβ). It is written locally as

φ = φpq(z, z) dzp dzq. (2.9)

As an example, the Beltrami differential µ is (−1, 1)-differential:

µ = µz
z

dz⊗ ∂. (2.10)

It is interpreted as a C∞ section of the fibre bundle k−1 ⊗ k, where k is the holomorphic
cotangent bundle on �.

Under a holomorphic change of coordinates z → ω(z), we have the following
transformation law:

µ
ω

ω
= (∂ω)(∂ω)−1µ

z

z
. (2.11)

In particular, let us consider on� two complex variable functions Z(z, z) (and its c.c.) whose
differential 1-form is expressed as

dZ = λ(dz + µ dz) (2.12)

where µ is a C∞-function and satisfies the ellipticity condition as before:

|µ| < 1. (2.13)
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In this transition from the local reference complex structure (z, z) to the other one (Z(z, z),
Z(z, z)) that is parametrized by the Beltrami differential µ(z, z), the function λ(z, z) is
interpreted as the conformal factor.

As the differential of the two-variables function dZ is a linear combination of differentials
dz, dz whose coefficients are the partial derivatives of the function Z(z, z), we have

dZ = ∂Z dz + ∂Z dz (2.14)

with

∂Z ≡ ∂Z

∂z
∂Z ≡ ∂Z

∂z
.

The combination of equations (2.12) and (2.14) gives the following relations:

∂Z = λ (2.15)

∂Z = λµ. (2.16)

These are equivalent to the partial derivatives equation

(∂ − µ∂)Z = 0 (2.17)

which is the Beltrami equation satisfied by new coordinates Z and defines the quasiconformal
transformation between the two complex structures (z, z) and (Z(z, z), Z(z, z)). Indeed, if
µ = 0 then we have

∂Z = 0 (2.18)

which is a conformal transformation:

(z, z)→ (Z(z), Z(z)). (2.19)

In other words, the solution of equation (2.17) is interpreted as a deformation of the reference
conformal structure by the parameter µ. Then the function µ(z, z) corresponds to a new
conformal structure whose coordinates system is (Z(z, z), Z(z, z)). Hence, each conformal
structure corresponds to a Beltrami differential that can be defined by the Beltrami equation.
Indeed, from equation (2.17) we get

µ = ∂Z

∂Z
. (2.20)

3. The Cauchy kernel

Now, let us define on the complex Riemann surface � the inverse of the operator ∂ as
follows [6, 10]:

∂F (z, z) = f (z, z) (3.1)

where F, f ∈ C∞(�). Then,

F(z, z) =
∫
�

dm(ω,ω)N(ω, z)f (ω, ω). (3.2)

With

dm(ω,ω) = dω ∧ dω

2iπ
.

The function N(ω, z) is called the specified Cauchy kernel corresponding to the specified
Riemann surface. For example, on the complex plane C, the Cauchy kernel is given by [6]

N(ω, z) ≡ 1

z− ω (3.3)
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and then, the function F is expressed as

F(z, z) =
∫
C

dm(ω,ω)
f (ω, ω)

z− ω . (3.4)

Now, let us consider the Beltrami equation (2.6) in the following form:

∂Z = µ∂Z. (3.5)

So, the function Z(z, z) parametrizing the new complex structure that corresponds to the
Beltrami differential µ(z, z) is given by

Z(z, z) =
∫
�

dm(ω,ω)N(ω, z)(µ∂Z)(ω, ω). (3.6)

Then Z is a (non-local) holomorphic functional of µ as well as the integration factor λ.

4. The iterative solution of the Beltrami equation on C

Let us consider the application of the ∂-operator on equation (3.5):

∂∂Z = ∂µ∂Z + µ∂2Z. (4.1)

Then, with the help of equation (2.4), we have

∂λ = λ∂µ + µ∂λ. (4.2)

By using the definition

 ≡ ln λ (4.3)

equation (4.2) becomes

∂ = ∂µ + µ∂ (4.4)

that is, another form of the Beltrami equation.

4.1. The generalized Cauchy formula

The resolution of the Beltrami equation in terms of powers ofµ is performed by inverting the ∂-
operator using the Cauchy kernel techniques [13]: iff ∈ D(C)with,D(C) = {µ/µ ∈ C∞(C)
and µ has a compact support}.

Then we define the inverse of the ∂-operator on the complex plane by the relation

(∂
−1
f )(ω) =

∫
C

dm(z, z)
f (z)

ω − z (4.5)

where N(ω, z) = 1
ω−z is the Cauchy kernel on C.

Then we have

f = ∂(∂−1
f )

= ∂−1
(∂f ). (4.6)

By using the definition

∂(∂
−1
f ) ≡ ∂∂−1

f (4.7)

we obtain the following expressions:

(∂∂
−1
f )(ω) =

∫
C

dm(z, z)∂ω
1

ω − zf (z) (4.8)

=
∫
C

dm(z, z)∂z
1

z− ωf (z) (4.9)
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that are well defined in the sense of distributions because for f ∈ D(C), ∂−1
f and ∂∂

−1
f are

C∞ and out of the support of f they are analytic functions [12].
Then, by using the limit condition  |µ=0 = 0, we can write

∂ = (∂∂−1
)∂ (4.10)

because µ ∈ D(C) implies ∂ ∈ D(C). Then, by substituting equation (4.10) in (4.4), we
get the following:

∂ = ∂µ + µ(∂∂
−1
)∂ . (4.11)

4.2. The iterative solution of the Beltrami equation on C

Now, let us consider the following Neumann series:

g1 = ∂µ
gk = µ(∂∂−1

)gk−1 k = 2, 3, . . .
(4.12)

and then, we can formally write

∂ =
+∞∑
k=1

gk. (4.13)

To express the general term gk in powers of µ, in the reference coordinates system (0), let us
use the notation of [7]:

zi ≡ i i = 0, 1, 2, . . .

dmi ≡ dzi ∧ dzi
2iπ

i = 0, 1, 2, . . .

∂i ≡ ∂

∂zi
zij ≡ zi − zj and µi ≡ µ(zi).

(4.14)

Then, by using the relation (4.8), we get the general term in the reference coordinates as

gk(0) =
∫
C

dm1 µ0∂0

(
1

z01

)
gk−1(1). (4.15)

The insertion of the induction formula (equation (4.12)) into equation (4.15) enables us to
write

gk(0) =
∫
C

k−1∏
i=1

dmi
k−2∏
i=0

∂i

(
1

zii+1

)
∂kµk−1

k−2∏
i=0

µi. (4.16)

Hence, we determine the ∂
−1

-operator action on the general terms as follows:

∂
−1
0 gk(0) =

∫
C

k−1∏
i=0

(dmi µi)
k−3∏
i=0

∂i

(
1

zii+1

)
∂2
k−2

(
1

zk−2k−1

)
. (4.17)

Due to the ellipticity condition; |µ| < 1 and µ ∈ C∞(C), the Neumann series that is
constructed is C∞ in the reference coordinates system (0) and is uniformally convergent.
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5. The projective connection

Besides the complex structure on the Reimann surface�, there is a projective structure which
is parametrized by a projective connection. For example, a holomorphic projective connection
R0 on�; ∂R0 = 0 is an assignment, to any coordinate z of a reference conformal structure, of
a smooth function R0 defined in the domains of z and z′ by the following transformation [12]:

R
′
z′z′(z

′) = (∂ ′z)2[Rzz(z)− S(z′; z)] (5.1)

where

S(z′; z) = ∂2 ln ∂z′ − 1
2∂ ln ∂z′ (5.2)

is the Schwarzian derivative.
Furthermore, there exists a Beltrami differential µ = µzz dz ⊗ ∂z on �; that is a (−1, 1)-

differential and then a C∞ section of the fibre bundle K−1 ⊗ K , where K is a holomorphic
cotangent bundle on � [14], such that R is µ-holomorphic, i.e.

(∂ − µ∂ − 2∂µ)R = ∂3µ. (5.3)

This means that to any element R of the space of all projective connections satisfying
equation (5.3), there is canonically associated a projective structure subordinated to the
conformal structure which is parametrized by µ. In particular, one can deduce from
equation (5.3) (by putting µ = 0) that, in the reference complex structure, the µ-holomorphic
projective connection becomes holomorphic. In another way, a quasiconformal transformation
transforms, in a reference complex coordinates system, a holomorphic projective connection
into a µ-holomorphic one:

R0(z)
µ−→R(z, z) ∂R0 = 0 −→ ∂R = (∂3 + 2R∂ + ∂R)µ ≡ L3(µ) (5.4)

where L3 is the third Bol’s operator [15].
Physically speaking, a holomorphic projective connection R0 in the reference conformal

structure ensures the correct conformal covariance of the right-hand side of the conformal
Ward identity [2, 6, 11]:

(∂ − µ∂ − 2∂µ)
δ�[µ]

δµ
= −k

24π
(∂3µ + 2R0∂µ + ∂R0µ) (5.5)

where �[µ] is the effective action of an arbitrary conformal field theory on a Reimann surface
� (for a chiral sector) when the matter field is integrated out. k is the central charge of the
model.

Indeed, the diffeomorphisms anomalyA(C,µ) = −µL3(C), whereC is the ghost field in
the BRST formalism [6], transforms with a Jacobian under a conformal change of coordinates:

A(C,µ)′ = (∂ ′z)(∂ ′z)A(C,µ). (5.6)

6. The iterative solution of the µ-holomorphy equation

Now, let us write equation (5.3) as follows:

∂R = ∂3µ + 2R∂µ + µ∂R. (6.1)

Then by using the inverse of the ∂-operator (6.1) becomes

∂R = ∂3µ +D∂R (6.2)

with

D ≡ (2∂µ + µ∂)∂
−1
. (6.3)
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Hence, ∂R is equal to the Neumann series that has a finite limit for |µ| < ε � 1:

∂R =
∞∑
k=1

gk (6.4)

where

g1 = ∂3µ (6.5)

and

gk = Dgk−1. (6.6)

So, in some coordinate system say, (z0) ≡ (0), the µ-holomorphic projective connection is
given by

R(0) =
∞∑
k=1

∂

−1

0

gk(0). (6.7)

The Cauchy kernel formula given before, enables us to get

∂
−1
0 gk(0) =

∫
C

dm1
gk(1)

z01
(6.8)

and by using equation (6.6) we have

∂
−1
0 gk(0) =

∫
C

dm1
D1gk−1(1)

z01
(6.9)

with

Di = (2∂iµi + µi∂i)∂
−1
i . (6.10)

Then we obtain the k-term of the perturbative series in terms of µ of the µ-holomorphic
projective connection as follows:

∂
−1
0 gk(0) = (−1)k

∫
C

k∏
i=1

(dmi µi)∂
3
kAk−1 (6.11)

where

A0 ≡ 1

z01
(6.12)

and

Ak = 2∂kAk−1

zkk+1
+ Ak−1∂k

(
1

zkk+1

)
. (6.13)

Finally, the µ-holomorphic projective connection on the complex plane, in some reference
coordinates system (z) ≡ (0) is given by

R(0) =
∞∑
k=1

(−1)k
∫
C

k∏
i=1

(dmiµi)∂
3
kAk−1. (6.14)

Here, we stress that we recover the results of [2] by putting in equation (6.14) k = 1, 2, 3.
Then our results generalize those of [2].

Out of the critical dimensions, the Weyl anomaly can by shifted to a diffeomorphism
anomaly by extracting from the effective action a suitable local counterterm and this leads to
exploitation of the holomorphic feature of the diffeomorphism anomaly [1]. Local forms of
this counterterm have been proposed in the literature [1,2] and the references therein. However,
the suitable form, on an arbitrary compact Riemann surface without boundary, was given by
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Knecht et al [1]. They have found that three terms are involved and they have obtained, in the
space of local functionals, the following equivalence equation for the s-cohomology:

A(), g) + s[�I + �II + �III] = A(C,µ) + A(C,µ) (6.15)

where A(), g) is the Weyl anomaly which is a functional of the Weyl ghost ) and of the
metric g on a Riemann surface�. s is the BRST operator associated with the diffeomorphism
group. A(C,µ)+A(C,µ) is the chirally split diffeomorphism anomaly which depends on the
vector field C = c + µc (the combination of the diffeomorphism ghosts) and on the Beltrami
differential µ.

�I is the Liouville action written in terms of a (1, 1)-conformal field in a background
which is designed to absorb the Weyl anomaly.

�II is the second term that was expressed in terms of the holomorphic and the µ-
holomorphic projective connections [2]:

�II = k

12

∫
�

dm0µ0(R − R0)(0) + c.c. (6.16)

�III is the third term that completes the elimination of the background to the benefit of the
conformal class of metrics. Then, by using the expression of the µ-holomorphic projective
connection (equation (6.14)), we get the following form of the action �II:

�II = − k

12

∫
C

dm0 R0(0)− k

12

∞∑
n=1

(−1)n+1
∫
C

n∏
i=0

(dmi µi)∂
3
nAn−1. (6.17)

Furthermore, it was shown in [3] that the Polyakov action for a conformal model is given by

�P = �II[µ] + 2
∫
�

dm0 µ0f (0) (6.18)

where f is an element of the Cauchy kernel of the Ward operator , ≡ ∂ − µ∂ − 2∂µ.
Then we were able to get the explicit expression, at any order of the perturbation series,

for the Polyakov action by using the results of [2, 3, 7, 8], from which all Green functions can
by easily derived. This implies that the action (6.17) resums the perturbative series in terms of
powers of the parameter µ that is interpreted as the exterior source of the energy–momentum
tensor. This is the Neumann series, the solution of the µ-holomorphy equation.

Then we have expressed explicitly the Polyakov conjecture on the complex plane: on C,
for each model of central charge k, the formal series

k

12

∞∑
k=1

(−1)k
∫
C

k∏
i=0

(dmi µi)∂
3
kAk−1 (6.19)

that appears in equation (6.17) is resumed by the Polyakov action �P[µ] for µ ∈ D(C).

7. Conclusion

Here, we give the explicit expression of theµ-holomorphic projective connection that is needed
to preserve the conformal covariance in the µ-complex structure and to present the chirally
split diffeomorphisms anomaly. Then we prove the Polyakov conjecture on the complex plane
with the help of the solution of the µ-holomorphic projective connection equation and of the
expression (6.16) of the Polyakov action.
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